Increased stability in the continuation for the Helmholtz equation with variable coefficient
نویسنده
چکیده
In this paper we give analytical evidence of increasing stability in the Cauchy Problem for the Helmholtz equation when frequency is growing. This effect depends on convexity properties of the surface where the Cauchy Data are given and on some monotonicity properties of the variable coefficient of the Helmholtz equation. Proofs use Carleman estimates and the theory of elliptic and hyperbolic boundary value problems in Sobolev spaces.
منابع مشابه
Increased stability in the Cauchy problem for some elliptic equations
We derive some bounds which can be viewed as an evidence of increasing stability in the Cauchy Problem for the Helmholtz equation with lower order terms when frequency is growing. These bounds hold under certain (pseudo)convexity properties of the surface where the Cauchy data are given and of variable zero order coefficient of the Helmholtz equation. Proofs use Carleman estimates, the theory o...
متن کاملCubic spline Numerov type approach for solution of Helmholtz equation
We have developed a three level implicit method for solution of the Helmholtz equation. Using the cubic spline in space and finite difference in time directions. The approach has been modied to drive Numerov type nite difference method. The method yield the tri-diagonal linear system of algebraic equations which can be solved by using a tri-diagonal solver. Stability and error estimation of the...
متن کاملIncreased stability in the continuation of solutions to the Helmholtz equation
In this paper we give analytical and numerical evidence of increasing stability in the Cauchy Problem for the Helmholtz equation when frequency is growing. This effect depends on convexity properties of the surface where the Cauchy Data are given. Proofs use Carleman estimates and the theory of elliptic boundary value problems in Sobolev spaces. Our numerical testing is handling the nearfield a...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کامل